top of page

privacy

The Improved Performance Research Integration Tool (IMPRINT) is a discrete event simulation and human performance modelling software tool developed by the Army Research Laboratory and Micro Analysis and Design (acquired by Alion Science and Technology). It is developed using the .NET Framework. IMPRINT allows users to create discrete-event simulations as visual task networks with logic defined using the C# programming language. IMPRINT is primarily used by the United States Department of Defense to simulate the cognitive workload of its personnel when interacting with new and existing technology to determine manpower requirements and evaluate human performance.[1]

IMPRINT allows users to develop and run stochastic models of operator and team performance. IMPRINT includes three different modules: 1) Operations, 2) Maintenance, and 3) Forces. In the Operations module, IMPRINT users develop networks of discrete events (tasks) that are performed to achieve mission outcomes. These tasks are associated with operator workload that the user assigns with guidance in IMPRINT. Once the user has developed a model, it can be run to predict the probability of mission success (eg, accomplishment of certain objectives or completion of tasks within a given time frame), time to complete the mission, workload experienced by the operators, and the sequence of tasks (and timeline) throughout the mission. Using the Maintenance module users can predict maintenance manpower requirements, manning requirements, and operational readiness, among other important maintenance drivers. Maintenance models consist of scenarios, segments, systems, subsystems, components and repair tasks. The underlying built-in stochastic maintenance model simulates the flow of systems into segments of a scenario and the performance of maintenance actions to estimate maintenance man-hours for defined systems. The Forces module allows users predict comprehensive and multilevel manpower requirements for large organizations composed of a diverse set of positions and roles. Each force unit consists of a set of activities (planned and unplanned) and jobs. This information, when modeled, helps predict the manpower needed to perform the routine and unplanned work done by a force unit.

bottom of page